APPENDIX K.3

INITIAL PHASE - ENVIRONMENTAL BORING PROGRAM SOIL ANALYTICAL RESULTS SUMMARY

Second Avenue Subway Initial Environmental Borings Volatile Organic Compounds in Soil

Boring Identification No.	1	H125_5	H125_5	H125_5	H125_3	H97_2	H97_2	H97_2	H01_3	H57_1	H57-1	H54-2
Sampling Date		6/16/2003	6/16/2003	6/16/2003	6/16/2003	6/6/2003	6/6/2003	6/6/2003	6/20/2003	6/9/2003	6/9/2003	6/10/2003
Sample Denth (feet)		12-14	14-16	48-50	4-5	10-12	12-14	36-38	10-12	8-10	10-12	6-8
Botontial Contaminant		12-14	14-10	40-30	4-5	10-12	12-14	30-30	10-12	0-10	10-12	0-0
Sourco	мпі	Р	Б	Р					DC	DC	DC	
Unite		ua/Ka	ua/Ka	ua/Ka								
	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Ng
Chloromethane	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluromethane	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	7.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	1.4	ND	ND	ND	ND	ND	9.2	ND	ND	ND	ND	5.9
trans-1,2-Dichloroethene	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	1.1	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1.2	ND	ND	ND	ND	ND	ND	8800	ND	ND	ND	ND
t-1,3-Dichloropropene	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	0.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1.3	ND	ND	ND	340	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene	1.1	ND	ND	ND	ND	ND	ND	27000	ND	ND	ND	ND
m/p-Xylenes	2.9	ND	ND	ND	ND	ND	ND	44000	ND	ND	ND	ND
o-Xylene	1.2	ND	ND	ND	ND	ND	ND	22000	ND	ND	ND	ND
Bromoform	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

ug/Kg=micrograms/kilogram (or ppb)

ND=Not Detected i.e., below MDL

MDL = Method Detection Limit P=Petroleum Storage Tank

DC=Dry Cleaner

MGP=Manfactured Gas Plant

Second Avenue Subway **Initial Environmental Borings** Volatile Organic Compounds in Soil

Poring Identification No.		464.2				444	444					
Sompling Date		E/10/2002	6/10/2003	6/10/2003	E/11/2003	E/11/2002	E/11/2002	6/12/2003	6/12/2003	6/13/2003	E/17/2003	E110/2002
Sample Depth (feet)		0/10/2003	0/10/2003	0/10/2003	0/11/2003	0/11/2003	42 44	0/12/2003	0/12/2003	6/13/2003	0/17/2003	0/10/2003
Sample Depth (leet)		0-10	0-10	12-14	12-14	20-30	42-44	10-10	20-20	50-50	0-9	14-10
	MDI										D Dr	
Source							UC, F					г, гі ца/Ка
onits	ug/Ng	ug/Kg	ug/Kg	ug/Ng	ug/Kg	ug/rtg	ug/rtg	ug/Kg	ug/Ng	ug/Ng	ug/rtg	ug/Ng
Chloromethane	1.8	ND										
Vinyl Chloride	1.1	ND	ND	ND	ND	ND	ND	1ND	ND	ND	ND	ND
Bromomethane	1.1	ND										
Chloroethane	1.4	ND										
Trichlorofluromethane	1.4	ND										
1,1-Dichloroethene	1.2	ND										
Acrolein	7.1	ND										
Acrylonitrile	8	ND										
Methylene Chloride	1.4	ND	ND	ND	4.5	ND						
trans-1,2-Dichloroethene	1.2	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND
1,1-Dichloroethane	0.95	ND										
Carbon Tetrachloride	2.2	ND										
Chloroform	1.1	ND										
1,1,1-Trichloroethane	1.1	ND										
Benzene	1.1	ND										
1,2-Dichloroethane	1.2	ND										
Trichloroethene	1.1	ND	4.5	19	ND							
1,2-Dichloropropane	0.84	ND										
Bromodichloromethane	0.84	ND										
Toluene	1.2	ND										
t-1,3-Dichloropropene	1.1	ND										
cis-1,3-Dichloropropene	0.95	ND										
1,1,2-Trichloroethane	1.2	ND										
2-Chloroethyl vinyl ether	1.5	ND										
Dibromochloromethane	0.95	ND										
Tetrachloroethene	1.3	ND	15	20	ND							
Chlorobenzene	1.2	ND										
Ethyl Benzene	1.1	ND										
m/p-Xylenes	2.9	ND										
o-Xylene	1.2	ND										
Bromoform	1.2	ND										
1,1,2,2-Tetrachloroethane	1.1	ND										
1,3-Dichlorobenzene	1.1	ND										
1,4-Dichlorobenzene	0.84	ND										
1,2-Dichlorobenzene	0.95	ND										

ug/Kg=micrograms/kilogram (or ppb)

ND=Not Detected i.e., below MDL

MDL = Method Detection Limit

P=Petroleum Storage Tank DC=Dry Cleaner

MGP=Manfactured Gas Plant

Second Avenue Subway Initial Environmental Borings Semivolatile Organic Compounds in Soil

Boring Identification Number		H125-5 6/16/2003	H125-5 6/16/2003	H125-5 6/16/2003	H97-2 6/6/2003	H97-2 6/6/2003	H97-2 6/6/2003	H54-2 6/10/2003	H54-2 6/10/2003	H11-1 6/10/2003	H11-1 6/10/2003
Sample Depth (feet)		12-14	14-16	48-50	10-12	12-14	36-38	6-8	8-10	8-10	12-14
Potential Contaminant Source	MDL	P	P	P	MGP. P	MGP. P	MGP. P	DC. P	DC. P	DC. P	DC. P
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
n Nitura e dina athu da mina	25										
n-initrosodimethylamine	35										
Phenol	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dis(2-Chioroetyi)ether	42				ND	ND					
2-Chiorophenol	38										
1,2-Dichlorobenzene	30										
1,3-Dichlorobenzene	42										
2 2-oxybis(1-Chloropropage)	35										
N-Nitroso-di-n-propylamine	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	80	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroethoxy)methane	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	42	ND	ND	ND	89	ND	750000	ND	ND	ND	ND
Hexachlorobutadiene	52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	130	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	42	ND	ND	ND	ND	ND	130000	ND	ND	50	ND
2,6-Dinitrotoluene	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	42	ND	ND	ND	ND	ND	13000	ND	ND	ND	ND
2,4-Dinitrophenol	69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	38										
2,4-Dinitioloiuene	30 25										
	42										
Eluorene	38		54				110000			58	
4 6-Dinitro-2-methylphenol	42	ND		ND	ND	ND	ND	ND	ND		ND
N-Nitrosodiphenylamine	69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Azobenzene	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl-phenylether	45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	66	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	35	ND	97	ND	ND	ND	140000	ND	ND	150	ND
Anthracene	45	ND	ND	ND	ND	ND	54000	ND	ND	50	ND
Di-n-butylphthalate	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	35	ND	70	ND	ND	ND	45000	ND	ND	39	ND
Benzidine	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	35	ND	51	ND	ND	ND	61000	ND	ND	73	ND
Butylbenzylphthalate	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	35	ND	ND	ND	ND	ND	26000	ND	ND	ND	ND
bis(2 Ethylboxyl)shthelete	55	NU 170			ND 52				NU 01		
Dis(2-Ethylnexyl)phthalate	30		41 ND		53 ND						
Benzo(b)fluoranthana	52 25						11000				
Benzo(k)fluoranthene	30						6600				
Benzo(a)pyrene	52						22000				
Indeno(1,2,3-cd)nyrene	55	ND	ND	ND	ND	ND	930	ND	ND	ND	ND
Dibenz(a h)anthracene	52	ND	ND	ND	ND	ND	980	ND	ND	ND	ND
Benzo(a,h,i)pervlene	45	ND	ND	ND	ND	ND	1900	ND	ND	ND	ND

ug/Kg=micrograms/kilogram (or ppb)

ND=Not Detected i.e., below MDL

MDL = Method Detection Limit

P=Petroleum Storage Tank

DC=Dry Cleaner

MGP=Manfactured Gas Plant

Second Avenue Subway Initial Environmental Borings Semivolatile Organic Compounds in Soil

Boring Identification Number									
Commission Date		0/44/0000	0/44/0000	C/44/0000	C/40/0000	C/40/0000	C/42/2002	C/47/0002	C/40/0000
Sampling Date		6/11/2003	6/11/2003	6/11/2003	6/12/2003	6/12/2003	6/13/2003	6/1//2003	6/18/2003
Sample Depth (feet)		12-14	28-30	42-44	16-18	26-28	56-58	8-9	14-16
Potential Contaminant Source	MDL	DC, P	DC, P	DC, P	MGP, DC, P	MGP, DC, P	MGP, DC, P	P, Pr	P, Pr
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
n-Nitrosodimethylamine	35	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	35	ND	ND	ND	ND	ND	ND	ND	ND
his(2-Chloroetyl)ether	42	ND	ND	ND	ND	ND	ND		ND
2 Chlorophonol	20				ND				ND
	30			ND					ND
1,2-Dichlorobenzene	35	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	42	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	35	ND	ND	ND	ND	ND	ND	ND	ND
2,2-oxybis(1-Chloropropane)	35	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine	35	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	38	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	35	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	35	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	38	ND	ND	ND	ND	ND	ND	ND	ND
2 4-Dimethylphenol	80	ND	ND	ND	ND	ND	ND		ND
2,4-Diffectivipiterio	25								
2.4 Dishlarapharal	30								
2,4-Dichlorophenol	45	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	42	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	42	ND	ND	ND	ND	540	ND	ND	ND
Hexachlorobutadiene	52	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	38	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	130	ND	ND	ND	ND	ND	ND	ND	ND
2.4.6-Trichlorophenol	35	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	42	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	35	ND	ND	ND	ND	ND	ND	ND	ND
	42				ND				ND
	-+2								
2,6-Dimitrotoluerie	35	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	42	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	69	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	38	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	38	ND	ND	ND	ND	ND	ND	ND	ND
Diethylphthalate	35	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	42	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	38	ND	ND	ND	ND	ND	ND	ND	ND
4 6-Dinitro-2-methylphenol	42	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	69	ND	ND	ND	ND	ND	ND	ND	ND
Azobenzene	38	ND	ND	ND	ND	ND	ND		ND
A Bromonhonyl nhonylothor	45				ND				ND
4-Biomophenyi-phenyiether	40								
	30	ND	ND	ND	ND	ND	ND	ND	ND
Pentachiorophenoi	00	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	35	ND	270	ND	ND	ND	ND	ND	ND
Anthracene	45	ND	340	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	42	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	35	ND	150	ND	ND	ND	ND	ND	ND
Benzidine	38	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	35	ND	160	ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	35	ND	ND	ND	ND	ND	ND	ND	ND
3 3-Dichlorobenzidine	35	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	35			ND	ND	ND	ND	ND	
Chrysene	55								
bio(2 Ethylboyyd) nhtholata	25						14	250	47
Dis(∠-Ethylnexyl)phthalate	35	ND	ND	ND	ND	ND	44	350	4/
Di-n-octyiphthalate	52	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	35	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	90	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	52	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	55	ND	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	52	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(q,h,i)pervlene	45	ND	ND	ND	ND	ND	ND	ND	ND

ug/Kg=micrograms/kilogram (or ppb)

ND=Not Detected i.e., below MDL

MDL = Method Detection Limit

P=Petroleum Storage Tank

DC=Dry Cleaner

MGP=Manfactured Gas Plant

Second Avenue Subway **Initial Environmental Borings PCBs in Soil**

Boring Identification Number		H125-5	H125-5	H125-5	HW-4	HW-4
Sampling Date Sample Denth (feet)		12-14	0/10/2003	6/16/2003 48-50	8-9	0/10/2003 1/-16
Potential Contaminant Source	мрі	P	P	-40-50 P	P Pr	P
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aroclor 1016	5.9	ND	ND	ND	ND	ND
Aroclor 1221	1.5	ND	ND	ND	ND	ND
Aroclor 1232	9.0	ND	ND	ND	ND	ND
Aroclor 1242	2.5	ND	ND	ND	ND	ND
Aroclor 1248	6.2	ND	ND	ND	ND	ND
Aroclor 1254	12.0	ND	ND	ND	ND	ND
Aroclor 1260	2.3	ND	ND	ND	ND	ND
Total Aroclors						

ug/Kg=micrograms/kilogram (or ppb) ND=Not Detected i.e., below MDL

MDL = Method Detection Limit P=Petroleum Storage Tank

DC=Dry Cleaner

MGP=Manfactured Gas Plant

Second Avenue Subway **Initial Environmental Borings** Metals in Soil

Boring Identification Number		H125-5	H125-5	H125-5	H97-2	H97-2	H97-2	HP-4	HW-4	HW-4
Sampling Date		6/16/2003	6/16/2003	6/16/2003	6/6/2003	6/6/2003	6/6/2003	6/12/2003	6/17/2003	6/18/2003
Sample Depth (feet)		12-14	14-16	48-50	10-12	12-14	36-38	26-28	8-9	14-16
Potential Contaminant Source	MDL	Р	Р	Р	MGP, P	MGP, P	MGP, P	MGP, DC, P	P, Pr	P, Pr
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aluminum	0.81	4130	2850	5910	5170	15200	7360	2990	530	2020
Antimony	0.29	0.46	0.41	ND	7.5	0.47	0.33	ND	0.41	ND
Arsenic	0.32	0.8	0.6	2.8	13.3	7.5	1.1	0.57	0.53	5.5
Barium	0.17	27.2	24.1	91.6	349	44.2	40.6	10.5	7.5	9.6
Beryllium	0.01	0.23	0.17	0.38	0.43	0.76	0.45	0.17	0.03	0.13
Cadmium	0.06	0.07	ND	0.22	0.45	0.44	0.18	ND	ND	0.15
Calcium	2.9	846	806	23500	9520	2440	1560	1710	2520	1600
Chromium	0.09	22.4	10.6	11	9.8	24.6	15.9	8.1	2.2	6.2
Cobalt	0.09	3.5	2.7	7.1	6	9	4.1	3.3	0.39	10.3
Copper	0.19	20	14.2	21.3	82.6	14	17.2	10.9	3.3	5.7
Cyanide	0.5	NA	NA	NA	ND*	ND*	ND*	ND	NA	NA
Iron	2.0	6460	4600	13600	21300	21800	10100	6460	1450	4030
Lead	0.22	5.1	3.2	9.3	964	25.2	6	5.1	11.2	4.9
Magnesium	1.7	1490	1300	8220	1260	5850	3050	1650	473	1070
Manganese	0.01	125	38.4	440	243	369	78.2	100	24.2	37.9
Mercury	0.01	0.12	ND	ND	1.1	0.06	ND	ND	0.03	ND
Nickel	0.27	8.1	7.3	14.7	14.7	21.1	16.3	20.6	1.2	14.2
Potassium	4.46	488	386	1790	751	4050	2180	492	97.4	356
Selenium	0.41	ND	ND	0.63	1.1	ND	ND	ND	ND	ND
Silver	0.46	0.48	0.45	1.1	2	0.91	ND	0.46	ND	ND
Sodium	49.1	300	172	194	811	1510	395	392	147	200
Thallium	0.72	ND	ND	ND	0.76	ND	ND	ND	ND	ND
Vanadium	0.12	11.9	12	17.1	19.5	37.3	17.6	9.1	2.4	10.6
Zinc	0.07	12	10.5	23.8	34.8	41.2	22.7	11.7	11.2	16.3

mg/Kg=milligrams/kilogram (or ppm)

ND=Not Detected i.e., below MDL

NA=Not Analzyed for Metals

MDL = Method Detection Limit

P=Petroleum Storage Tank DC=Dry Cleaner

MGP=Manfactured Gas Plant Pr=Printers

*= holding time exceeded, sample concentration possible higher

Second Avenue Subway Initial Environmental Borings Volatile Organic Compounds in Groundwater

Boring Identification Number		H125-5	H97-2	H4-1	HP-4	HW-4
Sampling Date		7/25/2003	7/28/2003	7/29/2003	7/30/2003	7/30/2003
Potential Contaminant Source	MDL	Р	MGP, P	DC, P	MGP, DC, P	P, Pr
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chloromethane	0.51	ND	ND	ND	ND	ND
Vinyl Chloride	0.79	ND	ND	ND	ND	ND
Bromomethane	0.38	ND	ND	ND	ND	ND
Chloroethane	2.4	ND	ND	ND	ND	ND
Trichlorofluromethane	0.73	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.69	ND	ND	ND	ND	ND
Acrolein	4.9	ND	ND	ND	ND	ND
Acrylonitrile	3.5	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	1	ND	ND	ND	ND	ND
Methylene Chloride	1.8	4.7	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.81	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.66	ND	ND	ND	ND	ND
Carbon Tetrachloride	0.47	ND	ND	ND	ND	ND
Chloroform	0.61	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.75	ND	ND	ND	ND	ND
Benzene	0.71	ND	140	ND	ND	ND
1,2-Dichloroethane	0.56	ND	ND	ND	ND	ND
Trichloroethene	0.72	ND	ND	2.8	ND	ND
1,2-Dichloropropane	0.73	ND	ND	ND	ND	ND
Bromodichloromethane	0.73	ND	ND	ND	ND	ND
Toluene	0.71	ND	97	ND	ND	ND
t-1,3-Dichloropropene	0.66	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.66	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.62	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	2.2	ND	ND	ND	ND	ND
Dibromochloromethane	0.66	ND	ND	ND	ND	ND
Tetrachloroethene	0.7	ND	ND	8.7	1.8	ND
Chlorobenzene	0.78	ND	ND	ND	ND	ND
Ethyl Benzene	0.76	ND	97	ND	ND	ND
m/p-Xylenes	1.5	ND	87	ND	ND	ND
o-Xylene	0.72	ND	120	ND	ND	ND
Bromoform	0.49	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.7	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0.74	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.93	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	0.88	ND	ND	ND	ND	ND

ug/l=micrograms/liter (or ppb) ND=Not Detected i.e., below MDL MDL = Method Detection Limit P=Petroleum Storage Tank DC=Dry Cleaner MGP=Manfactured Gas Plant Pr=Printers

Second Avenue Subway Initial Environmental Borings Semivolatile Organic Compounds in Groundwater

Boring Identification Number		L125 5	LIQ7 0			
Compliant Data		7/05/0000	T3/-2	TH-1	ПГ-4 7/20/2022	TVV-4
Sampling Date		//25/2003	//28/2003	//29/2003	7/30/2003	7/30/2003
Potential Contaminant Source	MDL	Р	MGP, P	DC, P	MGP, DC, P	P, Pr
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
n-Nitrosodimethylamine	1	ND	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND	ND
bis(2-Chloroetyl)ether	1.2	ND	ND	ND	ND	ND
2-Chlorophenol	1.1	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	1	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	1.2	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1	ND	ND	ND	ND	ND
2,2-oxybis(1-Chloropropane)	1	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine	1	ND	ND	ND	ND	ND
Hexachloroethane	1.1	ND	ND	ND	ND	ND
Nitrobenzene	1	ND	ND	ND	ND	ND
Isophorone	1	ND	ND	ND	ND	ND
2-Nitrophenol	1.1	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2.4	ND	2.7	ND	ND	ND
bis(2-Chloroethoxy)methane	1	ND	ND	ND	ND	ND
2.4-Dichlorophenol	1.4	ND	ND	ND	ND	ND
1.2.4-trichlorobenzene	1.2	ND	ND	ND	ND	ND
Naphthalene	1.2	ND	810	ND	ND	ND
Hexachlorobutadiene	1.6	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	1.1	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	4	ND	ND	ND	ND	ND
2 4 6-Trichlorophenol	1	ND	ND	ND	ND	ND
2-Chloronaphthalene	12	ND	17	ND	ND	ND
Dimethylphthalate	1	ND	ND	ND	ND	ND
Acenaphthylene	12	ND	54	ND	ND	ND
2 6-Dinitrotoluene	1	ND	ND	ND	ND	ND
Acenaphthene	12	ND	5.6	ND	ND	ND
2 4-Dinitrophenol	21	ND		ND	ND	ND
4-Nitrophenol	11	ND	ND	ND		ND
	1.1					
Diethylphthalate	1.1	ND	ND	ND		ND
4-Chlorophenyl-phenylether	12	ND	ND	ND		ND
Fluorene	11		20			
4.6-Dinitro-2-methylphenol	1.1					
N-Nitrosodinhenvlamine	2.1					
	1.1					
A Bromonhenyl nhenylether	1.4					
4-biomoprienyi-prienyieniei Hevachlorobenzene	1.4					ND
Pentachlorophenol	1.1					ND
Phenanthrene			16			ND
Anthracene	1 /		36			ND
Di n hutulahthalata	1.4		5.0 ND			ND
Eluoranthene	1.2		1 1			
Renzidine	1					
Dyrene	1		14			
r yiciic Rutylbenzylabtbalate	1					
2 2 Dichlorohonzidino	1					
S,S-Dichiol Oberiziunie	1					
	17					
bis/2 Ethylbeyyl)phthelata	1.7				1 0	
Dis(2-Eurymexy)philialate	10				1.ð	1.9
Di-n-octyphthalate	1.6					
Berizo(K)tiuorantnené	2.7	ND	ND	ND	ND	ND
Benzo(a)pyrene	1.6	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	1.7	ND	ND	ND	ND	ND
Dibenz(a,n)anthracene	1.6	ND	ND	ND	ND	ND
Benzo(a.h.i)perviene	1.4	i ND	I ND	I ND	I ND	NI)

ug/l=micrograms/liter (or ppb)

ND=Not Detected i.e., below MDL

MDL = Method Detection Limit

P=Petroleum Storage Tank

DC=Dry Cleaner

MGP=Manfactured Gas Plant

Second Avenue Subway Initial Environmental Borings PCBs in Groundwater

Boring Identification Number		H125-5	H97-2	H4-1	HP-4	HW-4
Sampling Date		7/25/2003	7/28/2003	7/29/2003	7/30/2003	7/30/2003
Potential Contaminant Source	MDL	Р	MGP, P	DC, P	MGP, DC, P	P, Pr
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Aroclor 1016	0.2	ND	NA	NA	NA	ND
Aroclor 1221	0.1	ND	NA	NA	NA	ND
Aroclor 1232	0.1	ND	NA	NA	NA	ND
Aroclor 1242	0.1	ND	NA	NA	NA	ND
Aroclor 1248	0.1	ND	NA	NA	NA	ND
Aroclor 1254	0.1	ND	NA	NA	NA	ND
Aroclor 1260	0.0	ND	NA	NA	NA	ND
Total Aroclors						

ug/I=micrograms/liter (or ppb) ND=Not Detected i.e., below MDL NA=Not Analyzed for PCBs MDL = Method Detection Limit P=Petroleum Storage Tank DC=Dry Cleaner MGP=Manfactured Gas Plant Pr=Printers

Second Avenue Subway Initial Environmental Borings Metals in Groundwater

Poring Identification Number		LI125 5				
Someling Dete		T120-0	T97-2	7/20/2002	7/20/2002	7/20/2002
Sampling Date	MDI	//25/2003 D	//20/2003	1/29/2003	1/30/2003	//30/2003 D D-
Potential Contaminant Source		P	WIGP, P	DC, P	MGP, DC, P	P, Pr
Units	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i
Aluminum	10.40	175	1760	NIA	NIA	150
	10.40	175	1700	NA NA		152
Antimony	2.00	ND	ND	INA NA	NA	ND
Arsenic	4.00	ND	ND	NA	NA	ND
Barium	9.90	214	136	NA	NA	138
Beryllium	0.10	0.13	0.44	NA	NA	ND
Cadmium	0.80	ND	ND	NA	NA	ND
Calcium	36.2	84400	74800	NA	NA	144000
Chromium	1.40	ND	5.5	NA	NA	ND
Cobalt	0.70	3.3	2.4	NA	NA	ND
Copper	3.60	8	12.4	NA	NA	ND
Cyanide	0.0	NA	ND	NA	NA	NA
Iron	22.2	180	7660	NA	NA	3060
Lead	3.00	ND	22.3	NA	NA	3.7
Magnesium	7.0	21100	121000	NA	NA	32900
Manganese	0.20	4360	755	NA	NA	480
Mercury	0.20	ND	ND	NA	NA	ND
Nickel	2.00	4.6	4.2	NA	NA	ND
Potassium	27.30	10700	120000	NA	NA	61000
Selenium	1.30	4.2	2.8	NA	NA	ND
Silver	3.70	ND	ND	NA	NA	ND
Sodium	217.2	110000	1300000	NA	NA	140000
Thallium	5.30	ND	ND	NA	NA	ND
Vanadium	1.40	ND	7.4	NA	NA	ND
Zinc	1.80	11	31.7	NA	NA	34.1

ug/I=micrograms/liter (or ppb) ND=Not Detected i.e., below MDL NA=Not Analyzed for metals MDL = Method Detection Limit P=Petroleum Storage Tank DC=Dry Cleaner MGP=Manfactured Gas Plant Pr=Printers

Figure K.3-2 Locations of Initial Environmental Borings 96 St Station and Shaft Sites

Figure K.3-3 Locations of Initial Environmental Borings 72 St Station and 66th St Shaft Site

Figure K.3-4 Locations of Initial Environmental Borings 55 St Station

Figure K.3-5 Locations of Initial Environmental Borings 14 St Station

Figure K.3-6 Locations of Initial Environmental Borings Houston St Station

Figure K.3-7 Locations of Initial Environmental Borings Chatham Sq Station

Figure K.3-8 Locations of Initial Environmental Borings Seaport Station